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TECHNICAL MEMORANDUM X-257

INTERNAL-PERFORMANCE EVALUATION OF TWO

FIXED-DIVERGENT- SHROUD EJECTORS*

By James R. Mihaloew

ABSTRACT

Ejectors designed for use in a Mach 2.2 aircraft were evaluated

over a range of representative primary pressure ratios and ejector cor-

rected weight-flow ratios. Basic thrust and pumping characteristics

are discussed in terms of an assumed engine operating schedule to illus-

trate the variation of performance with Mach number. The two designs

differed about 16 percent in the shroud longitudinal spacing ratio.

For corrected ejector weight-flow ratios up to 0. lO, the performance of

the fixed-shroud ejector designs is comparable with that of a similar

continuously variable ejector except at conditions corresponding to

acceleration with afterburning from Mach O. 4 to 1.2. In this region,

the ejector thrust ratio decreased to a minimum of O. 96.
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INTERNAL-PERFORMANCE EVALUATION OF TWO

FIXED-DIVERGENT-SHROUD EJECTORS*

By James R. Mihaloew

SUMMARY

A 0.278-scale quiescent-air internal-performance evaluation was

conducted on two fixed-divergent-shroud ejectors designed for operation

at flight Mach numbers up to 2.2. The two ejectors differed by about 16

percent in shroud longitudinal spacing ratio and had primary-nozzle posi-

tions corresponding to turbojet nonafterburning and afterburning operating

conditions. The ejectors were tested with dry unheated air over a range

of primary pressure ratios up to 16.0 and ejector corrected weight-flow

ratios up to 0.10.

It was determined that, for ejector corrected weight-flow ratios up

to O. iO, the ejector will provide internal thrust performance equal to

that of continuously variable shroud ejectors (ejector thrust ratios as

high as 0.99) except for conditions simulating afterburning acceleration

in the Mach number region from O.& to i. 2, where the thrust ratio de-
creased to a minimum of O. 96.

INTRODUCTION

Previous investigations (refs. I to 8) have shown that, for flight

at high subsonic and low supersonic speeds 3 convergent and cylindrical

fixed-shroud ejectors provide excellent thrust performance and that at

higher supersonic speeds a divergent-shroud ejector is necessary to

maintain efficient expansion. As aircraft speed is increased, however 3

the range of conditions over which the ejector must operate is also in-

creased, and off-design problems are encountered. One method of avoiding

these off-design problems is to use variable geometry that will provide

the desired thrust performance at the expense of mechanical complexity

and weight. If 3 however, the aircraft flight plan is such that the

quantity of fuel consumed during the off-design condition is relatively

small_ a flxed-shroud ejector could possibly be used_ and the weight

saving and mechanical simplicity may outweigh the somewhat reduced off-

design performance.

*Title, Unclassified.
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In order to provide information pertinent to this problem, an in-

vestigation was conducted to evaluate the internal performance of two

fixed-divergent-shroud ejectors over a range of primary pressure ratios

and ejector weight-flow ratios applicable to a supersonic aircraft operat-

ing at Mach numbers up to 2.2. Each ejector consisted of a fixed i0 °-

half-angle conical-section divergent shroud and a two-position primary

nozzle that simulated nonafterburning and afterburning operation. The

two ejector designs differed in longitudinal spacing ratio by about 16

percent. All configurations were tested in a quiescent-air thrust rig

using pressurized dry unheated air discharging into an evacuated tank.

The basic thrust and pumping performance of each configuration is

presented as a function of primary pressure ratio_ and the composite

performance is shown in terms of an assumed engino operating schedule.

A method of determining internal thrust by momentum and pressure integra-

tion (ref. 9) was also applied to the ejector_ and a comparison was made

with the measured thrust values to determine the validity of such a

method for application to full-scale in-flight thrust measurement.

APPARATUS

Ejector

A diagrammatic sketch of the ejectors and values of the ejector

dimensional parameters are given in figure 1. Two ejector designs dif-

fering in longitudinal spacing were investigated. Both ejectors used a

10°-half-angle conical-section divergent shroud and two fixed primary

nozzles that simulated nonafterburning operation (exit diameter ratio,

1.84) and afterburning operation (exit diameter ratio# 1.40). A 1.375-

inch spacer was installed at the shroud mounting flange shown in figure

2 to effect the change in longitudinal spacing. The ejectors were de-

signed to provide optimum performance in the simulated afterburning

position at a primary pressure ratio of about 12.0 which, in the assumed
flight plan, would occur at a Mach number of 2.2. The simulated nonafter-

burning configurations were designed to induce separation at primary

pressure ratios up to about 4.0 in order to avoid overexpansion losses

and provide performance similar to a convergent nozzle. In the transi-

tion from nonafterburning to afterburning, the primary-nozzle exit would
translate upstream.

Test Setup

The ejectors were installed in the test setup as shown schematically

in figure 3. The setup consisted of a plenum chamber, mounted between

the laboratory high-pressure-air and altitude-exhaust syste_, that
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contained a bedplate freely suspendedby four flexure rods on which the
ejector and mounting pipe were installed. Twolabyrinth seals installed
in series upstream of the mounting pipe maintained the pressure differ-
ence between the inlet air and exhaust systems. The resultant force on
the ejector and mounting pipe produced by internal and external pressures
was transmitted through a thrust linkage to a calibrated null-type pres-
sure force-measuring cell. The facility is the sameas described in
other ejector reports (e. g._ ref. 7).

Instrumentation

Instrumentation stations and details are indicated in figures 2 and
5, and the description and use are given in the following table:

Sta- Location
tion

0 Ambient

i Inlet

2 Forward bellmouth

5 Primary-air meas-

uring

4 Rear bellmouth

5 Upstream second-

ary orifice
6 Downstream sec-

ondary orifice

7 Thrust cell

p Primary inlet

s Secondary inlet

d Divergent shroud

Static-

pressure

taps

4

m

1

1

4

8

12

Total-

pressure

tubes

_m

12 (2 rakes)

1

8 (i rake)

6 (2

Temper-
ature,

thermo-

couples

2

2

2

2

Use

Ambient in tank

Primary-inlet

momentum

Primary-inlet

momentum

Primary mass flow

External pressure

force

Secondary mass
flow

Secondary mass

flow

Resultant force

Primary-nozzle

inlet condition

_Integrated thrust

PROCEDURE

Dry unheated air at approximately 3000 pounds per square foot abso-

lute was used in this investigation. Prior to running the ejector con-

figurations, the performance of each primary nozzle was evaluated over

a range of primary pressure ratios from 1.5 to 18.0 to determine the

primary exit momentum for the integrated thrust method. For the ejector
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configurations, a range of primary pressure ratios from 2.0 to approxi-
mately 18.0 was covered in increasing and decreasing order at ejector
corrected welght-flow ratios of 0 to 0.08 for the nonafterburnlng configu-
rations and 0 to O.10 for the afterburning configurations. The ejector
corrected welght-flow ratio (Ws/Wp)A/Ts/Tp with _/Ts/T p = 1.0 for this

investigation represents an actual ejector weight-flow ratio on the
order of O.20 with an afterburner operating at rated temperature.

Symbols, subscripts, and parameters used are defined in appendix A.
Calculations and definitions used in presenting the data are the same
as in reference 7_ appendix B. The integrated thrust method is explained
in appendix B of this report.

!

PRESENTATION OF DATA

Prlmary-Nozzle Performance

The primary thrust ratio and flow coefficient (defined in appendix

A) with and without the shroud are shown in figures A and 5 as functions

of primary pressure ratio for both primary nozzles. Thrust performance

was practically the same for both nozzles within experimental accuracy;

but, as expected, the flow coefficient was higher for the low-

convergence-angle primary nozzle. The flow coefficient was unaffected

by variations in the shroud length or ejector corrected weight-flow
ratio.

Ejector Performance

The principal difference between fixed- and variable-shroud ejectors

for supersonic aircraft is in their off-design performance. This dif-

ference is especially significant if there is a nonafterburning high

subsonic cruise requirement that would necessitate a compromise of the

fixed-shroud-ejector design-point performance. The compromise may be

accomplished by: (1) decreasing the expansion ratio so that the jet

would not be so overexpanded at off-design conditions, or (2) decreasing

the shroud spacing ratio to induce off-design separation of the jet,

thus resulting in essentially convergent nozzle performance. The latter

effect could also be achieved by increasing the shroud divergence angle

or by moving the primary nozzle downstream during the transition from

afterburning to nonafterburning. As previously mentioned_ it is the

latter principle that was incorporated in the design of the ejectors

investigated.

The performance is discussed in terms of an assumed engine operat-

ing schedule, given in figure 6, in order to show the variation of
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performance with Machnumber. The nozzle-pressure-ratio schedule shown
is typical for Mach2.2 aircraft_ and the inlet recovery is based on a
kinetic-energy efficiency of O.95. Full afterburning is assumedfor
takeoff and acceleration to Mach2.2 and nonafterburning for MachO.9
cruise. It is also assumedthat no base or boattail pressure reduction
took place at the ejector exit.

The thrust performance of the two ejectors investigated is presented
in the data plots of figure 7, which give the ejector thrust ratio as a
function of primary pressure ratio for several values of ejector correc-
ted weight-flow ratio. The composite performance of the high-spacing-
ratio ejector is presented in figure 8 as a function of Machnumber.
Inasmuch as the ejector thrust ratio includes isentropic or ideal thrust
in the denominator3 it is essentially a measure of Jet expansion
efficiency.

Nonafterburnin 6 thrust performance. - Nonafterburning thrust per-

formance for spacing ratios of 1.05 and 1.24 is given in figures 7(a)

and (b). The significant operating region for this condition corresponds

to primary pressure ratios up to about 4.0. In this region_ the thrust

characteristics for both ejectors are similar to those of a convergent

nozzle. For the shorter ejector_ figure 7(a) 3 thrust ratios of 0.974

and above were obtained for corrected ejector weight-flow ratios at zero

and above. In general_ as shown in figure 7(b)_ for the lower secondary

flows increasing the spacing ratio from 1.05 to 1.24 induced the primary

flow to attach at a lower primary pressure ratio with slightly greater

attendant overexpansion losses. At a corrected ejector weight-flow ratio

of 0.08_ however_ the performance recovered and _as as good as for the

shorter shroud. Both ejectors encountered hysteresis at zero-corrected

ejector weight-flow ratio between primary pressure ratios of about 3.0
and 6.0.

If an aircraft using this ejector had low base or boattail pressure#

the effective primary pressure ratio could be increased from 4.0 to as

high as 6.0 or 7.0_ and consequently ejector performance would not be as

good. Thus_ careful attention to the boattail fairing is essential for

good internal performance as well as low external drag.

Afterburnin 6 thrust performance. - Afterburning thrust performance

for spacing ratios of 1.01 and 1.15 is given in figures 7(c) and (d).

The region of interest here extends from a primary pressure ratio of

about 2.0 corresponding to takeoff to about 12.0 corresponding to opera-

tion at Mach 2.2. The thrust performance obtained is typical of that

for divergent ejectors (ref. 7). For the shorter ejector, figure 7(c),

ejector thrust ratios greater than 0.98 were obtained at a takeoff pri-

mary pressure ratio of 2.0 with ejector corrected weight-flow ratios

above about 0.04. Peak thrust performance for this configuration (ejec-

tor thrust ratio of 0.99 or better) occurred very near the design



primary pressure ratio of about 10.7 with corrected ejector weight-flow
ratios of 0.027 and higher. In general, from figure 7(d)_ increasing
the spacing ratio from 1.01 to 1.15 increased the performance about 1.0
percent over the entire operating region except at primary pressure
ratios near 2.0.

As previously indicated, if the nonafterburning configuration is
not operated at too low an ejector corrected welght-flow ratio (above
O.08), its performance will be independent of shroud spacing; so that
from a consideration of both afterburning and nonafterburning perform-
ance the large-spacing-ratio configuration would be a slightly better
one.

Composite thrust performance. - Figure 8 shows the performance of

the high-spacing-ratio ejector as a function of Mach number for condi-

tions of the previously mentioned assumed operating schedule (fig. 6)

with the assumption that the base pressure was equal to ambient.

As compared with a continuously variable ejector (ref. lO), the

only region where thrust performance is compromised (ejector thrust

ratios below 0.99) is in the Mach number region from 0.4 to 1.2, where

the thrust ratio decreased to a minimum of 0. 96. This overexpansion

loss was limited to about 4 percent with the us9 of an ejector corrected

weight-flow ratio of about O. 07. It appears that, on a gross thrust

basis, internal performance in this region could be improved by using

ejector corrected weight-flow ratios at the onset of afterburning accel-

eration that are even larger than those investigated.

Pumping performance. - Suitability of an ejector is not determined

by thrust performance alone. It must also be capable of pumping adequate

cooling air and matching inlet conditions.

Air-handling characteristics for all ejector configurations are

shown in figure 9 by plots of ejector total-pressure ratio against pri-

mary pressure ratio for various ejector corrected weight-flow ratios.

A line of the maximum ejector total-pressure ratio found from the assumed

inlet and engine operating schedule and assumed secondary-duct subsonic

pressure ratio of O. 95 is also included. This curve represents the limit

of ejector operation using inlet duct air.

If inlet ram air were used, all of the ejector configurations in-

vestigated could easily supply any ejector corrected weight-flow ratio

up to the maximum investigated at all primary pressure ratios except

those corresponding to sea-level static operating conditions.
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Integrated Thrust Performance

A comparison of the measuredand integrated thrust values for the
low-spacing-ratio configurations for selected ejector corrected weight-
flow ratios is presented in figure l0 to determine the validity of such
a method for application to full-scale in-flight thrust measurement. As
in reference 9, which madethe samecomparison for lower divergence angles
and expansion ratios 3 agreementwas good with differences between measured
and integrated values being_ in general# within 1 percent. Muchof this
difference can be attributed to frictional forces that were not considered
in the equation used.

SUMMARYOFRESULTS

A 0.2?8-scale internal-performance evaluation conducted on two
fixed-divergent-shroud aircraft ejectors differing in shroud spacing
ratio and designed for use in a Mach2.2 aircraft indicated that:

1. If ejector corrected welght-flow ratios of the order of 0.10 are
used3 the performance of these fixed-geometry ejectors is, in general,
as good as a continuously variable geometry ejector (ejector thrust ratio
of about 0.99) except at conditions corresponding to afterburning accel-
eration from Mach0.4 to 1.2_ where the thrust ratio decreased to a mini-
mumof about 0.96.

2. Increasing the ejector spacing ratio on the order of 16 percent
did not affect the performance of the nonafterburning ejector at the
high ejector weight-flow ratios (above 0.8) but improved the performance
of the afterburning ejector about i percent.

3. Integrated and measuredthrust values were, in general_ found to
agree within about 1 percent.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland3 Ohio3 March 22j 1960
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APPENDIX A

SYMBOLB

area, sq ft

flow coefficient, dimensionless

diameter_ in.

gross thrust, lb

measured ejector gross thrust, lb

calculated ejector gross thrust 3 lb

gravitational constant, 32.174 ft/sec 2

spacingj in. (see fig. l)

Mach number 3 dimensionless

mass flow 3 slugs/sec

total pressure 3 lb/sq ft abs

static pressurej lb/sq ft abs

gas constant_ air 3 53.3 ft-lb/(lb)(°R)

secondary gap height, ft (see fig. l)

total temperature, OR

velocity 3 ft/sec

weight flow, ib_c

ejector flow angle, deg (see fig. l)

specific heat ratio (air), 1.4, dimensionless

shroud divergence angle, deg (see fig. l)
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Subscripts:

b

d

e

ip

is

P

S

0

Parameters:

De/D p

Ds/Dp

Fej/(Fip + Fis)

Fp/Fip

L/Dp

PJpo

Ps/Pp

S/Dp

base

divergent

exit

ideal primary based on one-dimensional isentroplc flow

ideal secondary based on one-dimensional isentropic flow

primary

secondary

amb ient

shroud-exit diameter ratio

shroud-throat diameter ratio

ejector thrust ratio

primary thrust ratio

spacing ratio

primary pressure ratio

ejector total-pressure ratio

gap-length ratio

ejector corrected weight-flow ratio
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APPENDIXB

INTEGRATEDTHRUSTMETHOD

The following describes the method of obtaining ejector thrust from
pressure integrations and momentumforces. A control volume was chosen
as shownby dotted lines:

ms'Vs' As' Ps

s e

i

w

Ae ] t

7-i

The equation governing the motion of the control volume is derived from

Newton's second law and yields

eFej,c = (mpVp+ %Ap) + (mYs cos_ + %%) + p aA_ - p0Ae
s

The first term of the equation was obtained from the primary-nozzle

thrust calibrations made prior to the ejector runs 3 since

mpVp + ppAp = Fp + p_p

where PO is measured without the shroud.
according to

The second term was evaluated

mv
S s

ygRTs Ps Y

cos _ + PsAs = ms cos _N_ - _ - --] + PsAs
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where As = _(D2 - D2p)/4. The integration of the pressure along the
divergent wall was approximated by a summationof area steps, which gave

p dAd = _ pj _Aj
s J=l

where A d is the vertical projected area of the divergent wall and pj

is the average static pressure of diametrically opposed wall taps. Since

the wall static-pressure taps were located on equal projected incremental

areas, the integral reduces as:

_A _ k
A s J-I

k _A d = A d

Pj

k J=l

m

where Pd is the arithmetical average static pressure acting on the

divergent wall.

REFERENCES

i. Greathouse, W. K., and Hollisterp D. P.: Air-Flow and Thrust Char-

acteristics of Several Cylindrical Cooling-Air Ejectors with a

Primary to Secondary Temperature Ratio of 1.0. NACA RME52L24,
1953.

2. Greathouse, W. K., and Hollister, D. P.: Preliminary Air-Flow and

Thrust Calibrations of Several Conical Cooling-Air Ejectors with a

Primary to Secondary Temperature Ratio of 1. O. I - Diameter Ratios

of 1.21 and 1.10. NACA RMES2E213 1952.

3. Greathouse, W. K., and Hollister_ D. P.: PrelimlnaryAir-Flow and

Thrust Calibrations of Several Conical Cooling-Air Ejectors with a

Primary to Secondary Temperature Ratio of 1.0. II - Diameter

Ratios of 1.06 and 1.40. NACA RM E52F26, 1952.



12

4. Allen, John I_: PumpingCharacteristics for Several Simulated
Variable-Geometry Ejectors with Hot and Cold Primary Flow. NACAEM
ES4G1531954.

5. Hearthj Donald P.j and Valerino, Alfred S. : Thrust and PumpingChar-
acteristics of a Series of Ejector-Type Exhaust Nozzles at Subsonic
and Supersonic Flight Speeds. NACARME54H19_1954.

6. Beheim, Milton A.: Off-Design Performance of Divergent Ejectors.
NACARME58G10a#1958.

7. Trout, Arthur _3 Papell3 S. Stephenj and Povolny# John H.: Internal
Performance of Several Divergent-Shroud Ejector Nozzles with High
Divergence Angles. NACARME57F1331957.

8. Greathouse_William K.3 and Beale3 William T.: Performance Character-
istics of Several Divergent-Shroud Aircraft Ejectors. NACARM
E55G21a,1955.

9. Huntley3 S. C., and Yanowitz, Herbert: Pumpingand Thrust Character-
istics of Several Divergent Cooling-Air Ejectors and Comparisonof
Performance with Conical and Cylindrical Ejectors. NACARM
E53JI3_ 1954.

lO. Stofan_ Andrew J.# and Mihaloew3 JamesR.: Performance of a Variable
Divergent-Shroud Ejector Nozzle Designed for Flight MachNumbers
up to 5.0. NASATMX-255, 1960.



13

k

U

L _____,
I
I
I D Ds

De

If

Configuration

Nonafterburning
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De Ds L S

in. Dp Dp Dp Dp deg deg
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7.31 1.84 I.$2 i._% .28 i0 18.7

9.$9 1.40 1.16 1.01 .88 i0 11.2

9.59 1.40 1.16 I.IS .42 I0 9.9

Figure i. - Ejector geometry.
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• 96

• 92

J

.H

• 88

(a) Nonafterburning.

•94

4 6 8 l0 12 14

Primary pressure ratio, PJP0

(b) Afterburning.

Figure 5. - Primary-nozzle flow performance.
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